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DOUBLE RESONANCES AND SPECTRAL SCALING IN THE WEAK TURBULENCE

THEORY OF ROTATING AND STRATIFIED TURBULENCE

ROBERT RUBINSTEIN*

Abstract. In rotating turbulence, stably stratified turbulence, and in rotating stratified turbulence,

heuristic arguments concerning the turbulent time scale suggest that the inertial range energy spectrum

scales as k -2. From the viewpoint of weak turbulence theory, there are three possibilities which might

invalidate these arguments: four-wave interactions could dominate three-wave interactions leading to a

modified inertial range energy balance, double resonances could alter the time scale, and the energy flux

integral might not converge. It is shown that although double resonances exist in all of these problems,

they do not influence overall energy transfer. However, the resonance conditions cause the flux integral for

rotating turbulence to diverge logarithmically when evaluated for a k -2 energy spectrum; therefore, this

spectrum requires logarithmic corrections. Finally, the role of four-wave interactions is briefly discussed.
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1. Introduction. Weak turbulence theory [1, 2, 3] provides a closure for problems of interacting disper-

sive waves. As developed by Zakharov and collaborators [3], it provides a means to calculate Kolmogorov-like

spectra carrying constant fluxes of invariant quantities, to decide whether these spectra are independent of

the large-scale excitation and the dissipative mechanism (the problem of locality), to decide whether energy,

or other invariants, are carried from large to small scales or from small to large scales (direct or inverse

cascades), and to assess the stability of these spectra to various perturbations. A two-point closure closely

related to weak turbulence theory has been applied by Cambon and co-investigators to the numerical simu-

lation of rotating [4] and of stratified [5] turbulence.

An important ingredient in this theory is the resonance operator

//(1.1) T_(k, p, q) = dr ei'h(k'p'q)5(k -- p - q)
OO

where h is defined in terms of the dispersion relation w = w(k) of the waves by

(1.2) h(k, p, q) = w(k) 4- w(p) 4- w(q)

Eq. (1.1) has been written for a quadratically nonlinear theory, in which the lowest order perturbation theory

[2, 3] leads to three-wave interactions. Note that each choice of signs in Eq. (1.2) leads to a different operator.

The resonance operator defined by Eq. (1.1) depends on the geometric properties of the resonance surface

h = 0. The most important question about the resonance surface is whether it contains any (real) points

at all. If h(k, p, q) nevcr vanishes when k = p + q, then the integrand in Eq. (1.1) oscillates strongly and

the resonance operator vanishes. If all three-wave resonance operators vanish, it is necessary to proceed to

the next order in perturbation theory, which generates a theory with a nonlinearity of higher order than
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the orginal equations of motion; for quadratically nonlinear problems, the result is a theory with a cubic

nonlinearity. In such a theory of four-wave interactions, the resonance surface is never empty [3].

Assuming that the resonance surface is nonempty, the next question is whether it is nonsingular. If it

is, then elementary partition of unity arguments [6] show that

(1.3) dr ei'h(k'p'q) = _(h)

Consequently, if the dispersion relation is homogeneous of degree c_,

(1.4) _,(,_k) = A°_,(k)

then

(1.5) 7_(Ak, Ap, Aq) -- A-d-aTZ(k, p, q)

where d is the dimension of space. Eq. (1.4) states that the turbulent time scale is of order k -_. For problems

with three-wave interactions, including problems with hydrodynamic nonlinearity, a simple scaling argument

given by Orszag [7] suggests that when the energy flux is constant, the spectrum scales as

(1.6) E(k) ~ k -2+_/_

A complication which these arguments ignore is the possibility that all three-wave resonance operators

vanish. As noted earlier, turbulent energy transfer is then dominated by four-wave interactions and the

inertial range energy balance which leads to Eq. (1.6) must be modified. For later reference, we note the

energy spectrum corresponding to four-wave interactions

(1.7) E(k) .,_ k -7/3+c_/a

Another complication which is ignored by the heuristic arguments is the existence of double resonances,

which arise whenever the resonance surface is singular. The arguments leading to Eq. (1.3) are no longer

valid, and the theory leads to a more complex resonance operator and possibly to a different time scale.

The classic case of double resonance is nonlinear sound waves [8, 9]. In two space dimensions, the double

resonances change the time scale of the problem completely, and the scaling suggested by Eq. (1.6) does not

apply [3]. This problem will be discussed in more detail in the next section.

The dimensional arguments leading to Eq. (1.6) also assume that no time scale except the linear dispersive

time scale is relevant, and that no length scale except the wavelength _ k -1 is relevant; constancy of the

energy flux then suffices to determine the spectral scaling. In particular, neither the production nor the

dissipation mechanism influences the spectral scaling. This locality condition noted earlier can be expressed

analytically as the convergence of an integral representing the energy flux when this flux integral is evaluated

for an infinite inertial range given by Eq. (1.6). Divergence at large or small scales indicates the relevance of

the production or dissipation mechanism respectively, and alters the spectral scaling. Locality depends on

the geometry of the resonance surface, since the flux integral might diverge along singular curves or points
of the surface.

This paper considers three related problems of weak turbulence theory: rotating turbulence, stratified

turbulence, and the coupled problem of rotating, stratified turbulence. In all three problems, the dispersion

relation is homogeneous of degree zero:

(1.8) w(Ak) = w(k)



In the notation of Eq. (1.4), a = 0; consequently Eq. (1.6) predicts

(1.9) E(k) ,',, k -2

The k -2 spectrum has been already been proposed for rotating turbulence by Zhou [10] and for stratified

turbulence by Herring [11] using arguments similar to those of Orszag [7] noted earlier. Although all three

problems contain a preferred direction, and must exhibit spectral anisotropy, we consider in Eq. (1.9) the

energy averaged over shells in wavevector space.

The question which we pose is whether the scaling Eq. (1.9) actually is the prediction of weak turbulence

theory for these problems. In order that this be so, it is necessary to

1. evaluate the effect of any singularities of the resonance surface

2. demonstrate the convergence of the flux integral.

3. demonstrate the applicability of three-wave theory

It will be shown that although double resonances exist in all of these problems, they do not influence

energy transfer; consequently, the double resonances do not alter the energy spectrum. But evaluation

of the energy flux integral for rotating turbulence shows that the k -2 spectrum is only marginally local,

and that logarithmic corrections analogous to those derived by Kraichnan [12] for the enstrophy range in

two-dimensional turbulence are necessary. Accordingly, instead of Eq. (1.9),

(1.10) E(k) ,,_ k-2[log(kLo)] 1/2

where L0 is the integral scale. Finally, the role of four-wave interactions in these problems is briefly addressed.

These problems admit three-wave interactions, except for one special case of coupled rotating, buoyant

turbulence.

Since the k -2 spectrum also occurs in Burgers turbulence, a connection is sometimes made between the

occurrence of this spectrum and the presence of wave breaking [13]. The physical origin of the k -2 spectrum

in weak turbulence theory is certainly unrelated to wave breaking, which is an effect of strong nonlinearity.

In this connection, it is interesting that Kraichnan's derivation [14] of the spectrum of Burgers turbulence

does not invoke wave-breaking, although it is also a strong turbulence result.

The analysis of this paper will be limited to wave interactions alone: it will only consider the turbulence

of waves satisfying the dispersion relation appropriate to each problem. This is certainly a limitation in the

cases of stratified turbulence and the coupled problem, in which interactions with non-oscillatory geostrophic

modes [13] dominate the dynamics [15]. Since there is no three-wave mechanism which generates these modes

from wave interactions [13], this analysis appears to be self-consistent. However, the question is very much

open whether four-wave interactions cannot generate geostrophic modes [16], an interaction which would

have considerable importance in geophysical applications.

2. Double resonances in weak turbulence theory. The classic case of double resonances in weak

turbulence theory occurs for nonlinear sound waves [8, 9], where

(2.1)

Double resonances occur if

(2.2)

w(k) = c I kl

P--5-x-4- qz _--0
P q

P2Y-4- q-Y-Y= 0
P q

Pz + q_2__= 0
P q



These conditions are equivalent to

(2.3) _4_P _ Px _ Py = P_!
q qx qy qz

and can be satisfied for any k if p, q and k are collinear.

In three dimensions, the double resonance induces a logarithmic time scale which requires a re-ordering

of the perturbation theory [8] on which weak turbulence theory is based, but it does not to alter the scaling

relation Eq. (1.5) or the spectral scaling, E(k) _ k -3/2 which Eq. (1.6) suggests since w _ k 1.

In two dimensions, however, the situation is quite different: the resonance operator proves to scale with

time as t 1/2, and the theory must be reformulated completely [9]. Thus, if the t 1/2 time dependence is

absorbed into the definition of a new slow time scale, the resonance operator would scale as _ _ (k/c) W2

instead of as 7_ _ k/c, leading to E(k) ,,-, k -7/4.

The problem of nonlinear sound waves is exceptional in several respects [3], and the correct spectral

scaling is now considered to depend on higher order terms in the dispersion relation [17]. Nevertheless,

this example illustrates how double resonances can modify the turbulent time scales and consequently alter

the predictions of weak turbulence theory. We next determine whether singularities exist in the resonance

surface for the three problems of this paper.

3. Resonance surface singularities. The three cases of rotating, stratified, and rotating stratified

turbulence will be considered in turn. Although rotation and stratification are formally special cases of the

coupled problem, they prove to have special features requiring separate analysis.

3.1. Rotating turbulence. The dispersion relation of inertial waves in rotating turbulence is

(3.1) w(k) = +2_ -_z

where _ is the rotation rate. The resonance surface is therefore

kz Pz qz
(3.2) h(k, p, q) = _- -4- -- -4- -- = 0P q

Note that the resonance surface is nonempty and three-wave interactions are possible in this problem.

We must consider the possible singularities of the surface h = 0 when k, p, q satisfy the triangle condition

k = p + q. Singularities, or double resonances, occur if c3h/c3p = O, or

when h = 0. Eq. (3.3) states that

(3.4)

PxPz _ -4-qxqz
t)3 qZ

P_Pz _ ± q_qz
p3 q3

2
2 2 +q_P_ + Py _ ± qx

p3 q3

It is understood that the sign in each equality in Eq. (3.4) is the same, hence only two cases are represented.

But the last equality can only be satisfied if both sides are positive; therefore, the negative sign case in

Eq. (3.4) does not give any double resonance.



(3.5)

therefore

(3.6)

and

(3.7)

consequently

Assume first that no component of p vanishes. Rearranging the terms,

q3 q qz q qz +
p3 P_Pz P_Pz P_ + P_

qx qy q3 Pz

Pz Py p3 qz

q3 q6 p2z

p3 p6 q2z

(3.8) q_ -- qy -- qz
Px P_ Pz

The homogeneity of the dispersion relation means that the first set of equalities can only be satisfied if

(3.9) q = 1
P

Note the role of the homogeneity of this problem a; _ k ° in forcing this conclusion: the result Eq. (3.9) does

not apply to sound waves, because w _ k 1.

We conclude that the conditions for double resonance can only be satisfied if either q = p or q = -p. In

the first case in which k = 2p, the wavevectors are collinear, and the dispersion relation requires +1-4-1-4-1 = 0,

which is impossible. The second case in which k = 0 pertains to a degenerate mode which we do not consider.

It follows that double resonances can only occur if some component of p vanishes.

Next, consider thesc special solutions of Eq. (3.4). There are two obvious solutions which satisfy the

resonance conditions. First, if p_. = qz = 0 and p = q, the resonance conditions are trivially satisfied, since

also kz = O. Under these conditions, p = q implies that p lies on the line

(3.10) 2p. k = k2,pz = 0

If kz = 0, the resonance conditions require that either Pz = qz = 0, or that 2p. k = k 2. These planes

intersect in the line defined by Eq. (3.10), which is therefore a double line of the resonance surface.

A second obvious solution of Eq. (3.4) is p± q± O, where (p±)2 2 2= = = p_ +py. In this case, the resonance

condition cannot be satisfied if k is a third vertical vector, because, as noted above, the resonance condition

and collinearity would imply + 1 + 1 + 1 = 0. The only possibility is that kz = 0. But then the triad condition

k = p + q forces k = 0. Therefore, we again are led to resonance with a degenerate mode, a case which can

be ignored.

The remaining instances of vanishing components do not lead to double resonances not already noted:

the elementary case-by-case verification appears in Appendix I. Accordingly, we conclude that the resonance

surface has exactly one singularity, the double line defined by Eq. (3.10).

3.2.

relation

Waves in stratified turbulence. Internal waves in stratified turbulence satisfy the dispersion

(3.11) w(k) = -t-N_



Three-wavc interactions are possible for this problem.

For a double resonance,

pzp 2 qzq2z

pap± -- -4-q3q±

pup2 2
p3p± -- ± q_qzqaq±

(3.12)

and h = w(p) + w(q) + w(k) = 0. As in Eq. (3.4), only two

first two equalities in Eq. (3.12),

cases are represented by Eq. (3.12). From the

(3.13)

Using the third relation of Eq. (3.12),

P_ Pu P__33p± q2z
-- -- -4-q3 q± p2zqz qu

p3 p± q2 p3 q_ p± ±
(3.14) --± qz _(P )2q_

:1:q3 q± P_z Pz q3 qZ Pz q± Pz

where only the positive sign applies in the last equality. Since

(3.15) -±P±
qz qy q±

the last equality implies also

(3.16)

and finally, as in Eq. (3.8),

Px qz
p3 p± q2 _ (p± _2 qz 2

qz Pz

(3.17) P_ _ Py __ Pz
qz qu qz

Since the homogeneity implies that necessarily q/p = 1, wc are again led to thc two cases considered in

the previous section. The dispersion relation again excludes the case of coHinearity p = q and k -- 2p. If

q = -p, we obtain a degenerate mode k = 0 and this case is again excluded.

Next, consider the solutions of Eq. (3.12) when at least one component of p vanishes. First, ifpz = qz = 0,

then also kz = 0, and the resonance condition cannot be satisfied since it requires :i:l :t: 1 -4-1 = 0.

Second, if p± = q± -- 0, the third equation is satisfied but the first two become indeterminate. But it

is clear that three vertical vectors satisfying the triad condition are always resonant. Such vectors define a

degenerate line component of the resonance surface; any such component must be singular.

The remaining cases of vanishing components do not lead to anything new, and are analyzed in Appendix
II.

3.3.

(3.18)

Waves in rotating stratified turbulence. The dispersion relation is

w(k) 2 = 4_2(_--_-z)2 + N2(_) 2

(kz 2 N 2= (4_ 2-y 2) -_-) +



Three-wave interactions are possible provided 2ft ?t N. When 2fl -- N, two waves can only interact with a

geostrophic mode [13] and interactions among waves alone must be described by a four-wave theory.

Double resonances occur provided

1 pxp2z _± 1 qxq 2

wp p4 wq q4

1 pup 2 _+ 1 qyq2

wp p4 02q q4

1 pz(p±)2 1 qz(q±):
--5=

Wp p4 Wq qa
(3.19)

As in the two previous cases,

(3.20)

Using the third relation from Eq. (3.19),

(3.21)

consequently,

_ p4 2
Pz Py _ :L wp q_

qx qu wq q4 p2

1= ± (q- )5q'_
Wq p_ p± p4

_ P± 2 qz p2
(3.22) Px Pu _ qz ( ) _

q_ qy Pz "_ Pz q_

so that the conclusion reached in the two special cases,

(3.23) P_ _ Pu _ P y__
qx qu qz

again holds. Since the homogeneity of the dispersion relation requires that the factor of proportionality in

Eq. (3.23) have magnitude one, we again come to the two cases before, neither of which leads to a double

resonance.

The solutions of Eq. (3.19) when at least one component of p vanishes include first Pz = qz -- 0. Then

also kz = 0 and the resonance conditions cannot be satisfied since they reduce to ± 1 ± 1 ± 1 = 0. The same is

true of the second obvious solution p± = q± = 0. Thus, neither of the cases which lead to double resonances

in the uncoupled problems remains in the coupled problem.

However, the solution Px = Pu = 0, qz = 0 does lead to a double resonance. In this case, the resonance

condition reduces to

(3.24) 4a2p + = k (2a + N) 2

and the choice of the negative sign gives the equation

(3.25) 0 = k2z(N 2 - 412N) + (k 2 + k2)(4122 - 4fiN)

since k = (qx, qy, Pz). Thus, for every k satisfying Eq. (3.25), the decomposition p = (0, 0, Pz), q = (ks, k u, O)

defines a double resonance. Eq. (3.25) is the equation of a cone provided N > 12 or N < 4f_; if 12 < N < 4fl,

then there are no double resonances at all. The second alternative applies to the case of four-wave resonance

N = 2f_ noted earlier. If we consider the general case in which qz = 0 and look near the point Pz = Py = 0

when k satisfies Eq. (3.25), it is found that the singularity is that of a line component, the same singularity

that occurs in stratified turbulence.

The remaining case in which Eq. (3.19) can be satisfied is p, = q_ = 0. As in the previous cases, this

reduces to the case of collinearity, which has already been considered.



4. Singularities and the resonance operator. To determine the effectof the multipleresonances,

itisnecessaryto consider the form of the resonance operator near the singularity.For example, inthe case

ofnonlinearsound waves, allresonances aredouble because the resonance conditionforcescollinearityof the

three wavevectors.Locally,the resonance operator behaves likethe generalizedfunction

/F(4.1) [:D, f½ = dV dTei(_+Y2)rf(x, y, z)
oo

in which the resonance surface has degenerated into the line x = y = 0. In Eq. (4.1), f(x, y, z) is an arbitrary

test function. Changing to polar coordinates,

F F lT lTd[:D, f] = dr dz rdr (r, O, z)
o_ oG

/?= dzf(O, O, z)
cx)

(4.2)

Consequently, [8] the resonance operator reduces to integration along the line representing the degenerate

resonance surface. The three distinct integrals in Ref. 8 correspond to the different arrangements of three

collinear vectors: k > p > q, p > k > q, or p > q > k.

This same approach will be applied to analyze the effect of double resonances in rotating and stratified

turbulence: the resonance operator will be represented locally by a phase function with the same singularity

as the resonance surface. Since the double locus is different in rotating and stratified turbulence, each case

must be analyzed separately.

4.1. Rotating turbulence. Unlike the case of nonlinear sound waves, the resonance surface is non-

degenerate for rotating turbulence, and it is nonsingular away from the double curve. Consequently, one

contribution to the resonance operator is just 5(h). The problem remains to determine the effect of the

double curve on the resonance operator.

Near a double curve, the resonance operator behaves like the generalized function

//7(4.3) [T), f] = dV drei_u" f(x, y, z)

in which x = y = 0 is a double line of the surface xy = 0. In polar coordinates,

(4.4) [7?, I] = dr dz rdr dOe,r" ½.in(2ol. f(r, O, z)

To determine the effect of the double curve, it will suffice to ignore the variation along the double curve and

evaluate

5/7/7(4.5) [D', f] = dr rdr doe it" ½sin(2o)'/(r, 0)

in the special case f = cxp(- ½at2). If the limit

(4.6) lirao IV" , e -ar']

is zero, the double curve makes no contribution to the resonance operator; ff it is not zero, then there is an

additional contribution corresponding to integration over the double curve.

Integrating over r,

/7/7(4.7) [D*, e-aQ = dO dra - irsin(20)



The imaginary part of this integral is logarithmic, but it makes no contribution to the energy balance [2].

The real part of the integral in Eq. (4.7) can bc evaluated as

_14 dO T(4.8) Re[T_* e -at2] -----lira 8 -- arctan(-- sin(20))
' T---*c_ J-_/a sin(20) a

The integral can be evaluated approximately by setting

arctan(Tsin(20)) _ _ Tsin(20)/a if I sin(20 ) ]< ra/2T(4.9) a ( _/2 if 4sin(26) I---_/2T.

Substituting Eq. (4.9) in Eq. (4.8),

• aTr
(4.10) [:D*, e -_r2] _ 7r + T_mo 2rlog(_)

This approximation defines an upper bound, since the left side of Eq. (4.9) is smaller than the right side.

We conclude that the double curve contribution to the resonance operator is logarithmically divergent

in time. Therefore, for rotating turbulence, the real part of the resonance operator is

1
(4.11) ReT'¢ = _ _--_ _f(_(k) + _(p) + w(q))_(k - p - q) + T*J(C)

±_=

where C denotes the double curve Eq. (3.10). The notation T* is used provisionally to represent the

logarithmically divergent time scale.

In terms of the multiple-scale perturbation expansion used in weak turbulence theory, the result in

Eq. (4.11) should be understood to mean that therc are two slow time scales in rotating turbulence,

//(4.12) T1 = _h, T2 = e2 log(s)as

where e is the expansion parameter [2]. Unlike the otherwise analogous ease of sound waves, this logarithmic

time scale appears in the real part of the resonance operator and therefore could influence the inertial range

energy balance.

However, there is an important difference between the present case and sound waves: whereas in the

problem of nonlinear sound waves, double resonances occur for all possible k, in rotation, they occur only for

horizontal vectors. The weak logarithmic singularity induced by the double resonance will disappear upon

integration over all vectors k in the flux integral. Moreover, the double resonance occurs for interactions

which do not transfer any energy into the mode k [18]. We conclude that the double curve makes no

contribution to the energy flux.

4.2. Waves in stratified turbulence and rotating stratified turbulence. In both problems, the

Taylor series of the resonance surface near the singularity begins with the quadratic term p2 + p2 which is

satisfied by the line p_ -- Pv = 0. This is also the singularity found in the case of nonlinear sound waves. The

local behavior of the resonance operator is therefore given by Eq. (4.1) and the conclusions of Newell and

Aucoin [8] apply: the double resonance causes a logarithmic time scale, but does not modify the spectral

scaling•

But, as in the case of rotation, the logarithmic time-scale arises only for a subset of vectors k satisfying

at least one equation: vertical vectors in the case of stratified turbulence, and the condition Eq. (3•25) in

the coupled problem. In forming the flux integral, the logarithmic contributions to the time-scale will be

suppressed by integration over all vectors k.

We conclude that the double resonances are are irrelevant to energy transfer and spectral scaling in all

three problems.



5. Convergence of the flux integral. In rotating turbulence, it is convenient to express the flux

integral in terms of the Craya-Herring basis

e(1)(k) = kxn/Ik×n I

(5.1) e(2)(k) -- kx(kxf_)/I kx(kxl_) l

or the equivalent basis of Cambon and Jacquin [4] and the corresponding tensors

_0 (1) (2) (1) (2)= e i ej -- ej e i

= e,(1)e,(2)+ e ,el )
_2 (1) (1) (2) (2)-_ e i ej -- e i ej

In Eq. (5.1), f_ = 2(0, 0, _) is twice the angular velocity. Note that

(5.3) _iaj = Po(k) = (fq - kikjk -2

The linear response function for rotating turbulence is the solution of

&ij + Pip_pqGqj : 6(t - s)_ij(5.4)

which can be written

Gq (k, t, s) ----{cos(2flkz (t - s))Pij (k)

(5.5) + sin(2flkz(t - s)/k)_°j(k)}H(t - s)

where H is the unit step function. At this level of approximation, the fluctuation-dissipation theorem,

(5.6) Qij(k, T) = Gim(k, 7-)Qmj(k) + aim(k, -r)Qmi(k)

applies, where T = t -- S is time difference.

It must be expected [4] that the single-time correlation function is a sum over all of the ( tensors of

Eq. (5.2)

(5.7) Qij (k) = Z QP(k)_P (k)

But substituting Eq. (5.7) in Eq. (5.6), we find that the symmetry

Qij(k, T) = Qji(k,--T)

leads instead to the simpler expression

(5.8) Qij (k, r) -- sin(2i_kzr)Q(k)_°j (k) + cos(2f_k,r)Q(k)_3j (k)

in which the single-time correlation function is tensorially isotropic. For the purpose of computing the flux

integral, we will assume isotropy in k as well. Although this description of the correlation function is certainly

not realistic, the only use we make of it is substitution in the energy flux balance; an isotropic form is adequate

for this purpose. In order to evaluate the correlation function, it is necessary to solve closure equations; a

complete discussion is given by Cambon and Jacquin [4], although the analytical solution remains unknown.
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(5.9)

The energy flux integral, representing the net energy flux across the wavenumber k' is

<k' ,q>k' >k' ,q<k'

{P/m'n (k)Pm,_ (p)Qir (k, T)Qns (q, T)Gmm, (p, T)

+P_m_(k)P_rs(q)Q_(k, T)Q,_ (p, 7")Gram, (q, v)

-Pi_n(k)Pi,_(k)Q_(p, r)Vn_ (q, v)Gi,, (k, T)}

for three-wave interactions, where

(5.10) P,m,_(k) = kmP_(k) + k,_Pim(k)

Locality of the inertial range means that this integral is finite when the single-time energy spectrum scaling

as Q(k) _ k -4 is substituted. In the absence of resonances, the convergence of the flux integral in this case

is well-known: [7] it is a special case of the convergence of the integral in Eq. (5.9) when Q(k) _ k -_-2 and

1 </3 < 3. However, the resonance conditions require that this condition be checked independently.

5.1. Rotating turbulence. The proposed spectrum falls off rapidly enough at small scales that the

only possiblc divergence occurs when q --* 0 and p ---* k. The first question is whether the cancellation of

singularities in the absence of resonance conditions survives if the more complex tensor forms of Eq. (5.8)

are substituted. The verification is elementary: in this limit, the singularities in Eq. (5.9) are multiplied by

(5.11) P, mn (k)Pr_r_ (k)_¢) (k)_(ss) (0) = knn_rir['r_ -k,_(i))_irg,_'-(J)(0)

and

(0 (j) 0(5.12) p,m,(k)p_(k)_)(k)_(Js)(0) = k_k_Pi_(k)_,_n_ ( )

In Eqs. (5.11) and (5.12), i and j can each equal 0 or 3. When j = 0, both terms vanish, and when j = 3,

both are proportional to k 2. Consequently, the terms of order q0 cancel. Then the integrand in Eq. (5.9)

is of order q. But terms of this order vanish on integration by symmetry. Accordingly, as in the case of

isotropic turbulence, the integrals behave like

(5.13) / q2-_dq

near q = 0 in the absence of resonance conditions. This result depends on the odd parity of the integrand

under the substitution q ---+-q; this parity is preserved by the resonance conditions which are homogeneous

of degree zero.

The resonance conditions imply that q does not approach zero in an arbitrary fashion. Instead, the

following cases occur as q _ 0 and p --* k:

w(k) + w(p) = 2k,w(q) = =i=2w(k)

(5.14) _(k) - w(p) = 0,w(q) = 0

In the first case, q varies on a cone qz -- Aq, and in the second case, q is on a surface tangent to the plane

qz = 0. In both cases, the element of area on the surface can be taken proportional to qdq. The asymptotics

indicated in Eq. (5.13) are replaced by

(5.15) c _ f ql-_dq
J
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and the flux integral is logarithmically divergent when t3 --- 2.

It is also necessary to verify that there is no additional divergence contributed by the double curve

Eq. (3.10), but this conclusion is immediate because the double curve does not meet the singularity at q -- 0.

Thus, the flux integral is logarithmically divergent for the k -2 spectrum. It is known [12] that in this case,

logarithmic corrections to the spectrum are necessary: instead of Eq. (1.9), the corrected scaling Eq. (1.10)

applies.

5.2. Waves in stratified turbulence. It was suggested earlier that the theory of waves in stratified

turbulence decoupled from geostrophic motion may not occur in the actual physical system if four-wave

interactions can generate geostrophic modes from wave modes. Accordingly, a model problem will be inves-

tigated in which the nonlinearity of rotating turbulence is retained, but the dispersion relation is replaced

by the dispersion relation of stratified turbulence.

The conditions in Eq. (5.14) apply to this model problem. In the first case, q approaches zero along a

cone q± = _q, but in the second case, q must approach zero tangent to the line q_ = q_ =- 0. Approach

to q -- 0 along a line would be extremely singular, but the tangency forces the ratio q±/q to be nonzero,

contrary to the assumption that q±/q = 0. Thus, the flux integral is only logarithmically divergent, as in

the case of rotation. The log-corrected spectrum Eq. (1.10) will apply.

Analogous arguments apply to the coupled problem. However, we stress that a complete treatment of

these problems requires an account of the effect of coupling between waves and geostrophic modes.

6. The role of higher order resonances. It was noted earlier that the energy spectrum

(6.1) E(k) = Cv/-]_k -2

where the frequency f is 2f_ for rotation and N for stratification has already been proposed for rotating

turbulence, [10] and for stratified turbulence [11]. In the coupled problem, Eq. (5.5) has also been proposed

with a suitable function f = f(_t, N) [19]. It was noted earlier that in all cases, the heuristic argument is

similar to Orszag's [7]: if the time scale is homogeneous of degree zero, simple closure arguments assuming

a constant energy flux imply that the energy spectrum scales as k -2.

Weak turbulence theory suggests that such arguments are incomplete. In the isotropic problem of

Langmuir turbulence, w ,,_ k °, but the dispersion relation does not permit resonant three-wave interactions

[3]. In the absence of three-wave resonances, four-wave processes must be considered. This change modifies

the inertial range energy balance. The flux integral Eq. (5.9) for three-wave interactions can be written for

scaling purposes as

e ,_/(dk)2p(k)OP(k)Q(k) 2(6.2)

where P ,-, k represents the nonlinear coupling, O is the time scale, and the number of wavevector integrals

is represented symbolically. For four-wave interactions, instead

(6.3) _ ,,, /(dk)3p(k)(OP(k))3Q(k) 3

If O ,_ k °, then Eq. (6.2) predicts E(k) ,_ k -2 but Eq. (6.3) predicts E(k) ,,, k -7/3. More generally, the

spectral scalings of Eqs. (1.6) and (1.7) follow from the flux integrals Eqs. (6.2) and (6.3).

Yakhot [20] has proposed that four-wave resonances play a crucial role in rotating turbulence, especially

in the small aspect-ratio systems investigated by Smith et al. [21]. It is possible to assess the role of four-

wave interactions heuristically from the scaling forms of the energy balance Eqs. (6.2) and (6.3). Suppose
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thatthemodalamplitudesaredeterminedbythree-waveinteractionsasproposedabove.Theseamplitudes
canbesubstitutedin thefour-waveexpression,althoughdifferentsetsofmodesresonateineachcase.The
resultingfour-wavecorrectionto theenergyfluxisoforderk2_/fl 3. Since gl/3k2/3/_ << 1 is the condition

for weak turbulence theory to apply, the corrections to energy flux due to four-wave interactions would seem

to be small.

But this discussion ignores the constants in front of the two flux integrals. In cases in which three-wave

interactions are depleted, say by a combination of small aspect-ratio and a very large horizontal viscosity,

the four-wave contribution could dominate the three-wave contribution.

In stratified turbulence, the resonance condition again permits three-wave resonances, and it has been

shown that the double resonances are irrelevant to energy transfer. But in this problem, the importance

of interactions with geostrophic modes [5] and the comparatively secondary role of pure wave turbulence,

suggests that a more detailed analysis is required. The turbulence of nearly horizontal wave modes has

recently been analyzed by Caillol and Zeitlin [22] on the basis of weak turbulence theory.

The same considerations apply to the coupled problem. But in this case, the dispersion relation Eq. (3.18)

degenerates when N = 2fl to the isotropic form w = N which excludes three-wave resonances. Wave

turbulence in this case must be analyzed in terms of four-wave interactions, but since any four wavevectors

can form a resonant quartet, it is not possible to derive a spectral scaling from the flux integral in the weak

turbulence approximation without making further assumptions. In view of the greater dynamic importance

of the interactions of waves with geostrophic modes, the role of four-wave interactions in rotating stratified

turbulence remains uncertain.

Appendix I. Ifp_ = 0, then either qx = 0 or qz = 0. Ifpx = qx = 0, then ifpy # 0, dividing the

last condition in Eq. (3.4) by the second, Pz/P_ = qz/qy. This reduces to the case of proportionality of the

wavevectors, which we have seen does not yield a doublc resonance. If instead, p_ = 0, then the third of

Eq. (3.4) forces also qy = 0, and we have two vertical vectors. This case has also been shown not to lead to

double resonances.

Suppose next that p_ = 0 andqz =0. Then eitherpy = 0 orpz = 0. In the first case, p_ =py = 0

implies qz = qy = 0, which does not lead to a double resonance. In the second case, Pz -- q_ = 0, and this

case has already been considered.

Other cases correspond to interchanging x and y. The only double resonance is therefore the double line

Eq. (3.10).

Appendix II. If Pz = 0 and qz = O, then py = ±p± and q_ = +q±. Multiply the second relation of

Eq. (3.12) by p±/p± on the left side and by q±/qZ on the right side, then use the third relation to conclude

that p_/py = q_/qy. This is the case of collinearity, which we know cannot satisfy the resonance condition.

If Px = 0 and qz -- 0 then either Pz = 0 or p_ = 0. In the first case, Pz = qz = 0 which has already been

analyzed. In the second case, we have p = (0, O,pz), q = (qz, qy, 0) and then p, q, and k cannot resonate.

The remaining cases again correspond to interchanging x and y. The point singularity found in the main

text is therefore the only multiple resonance.
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